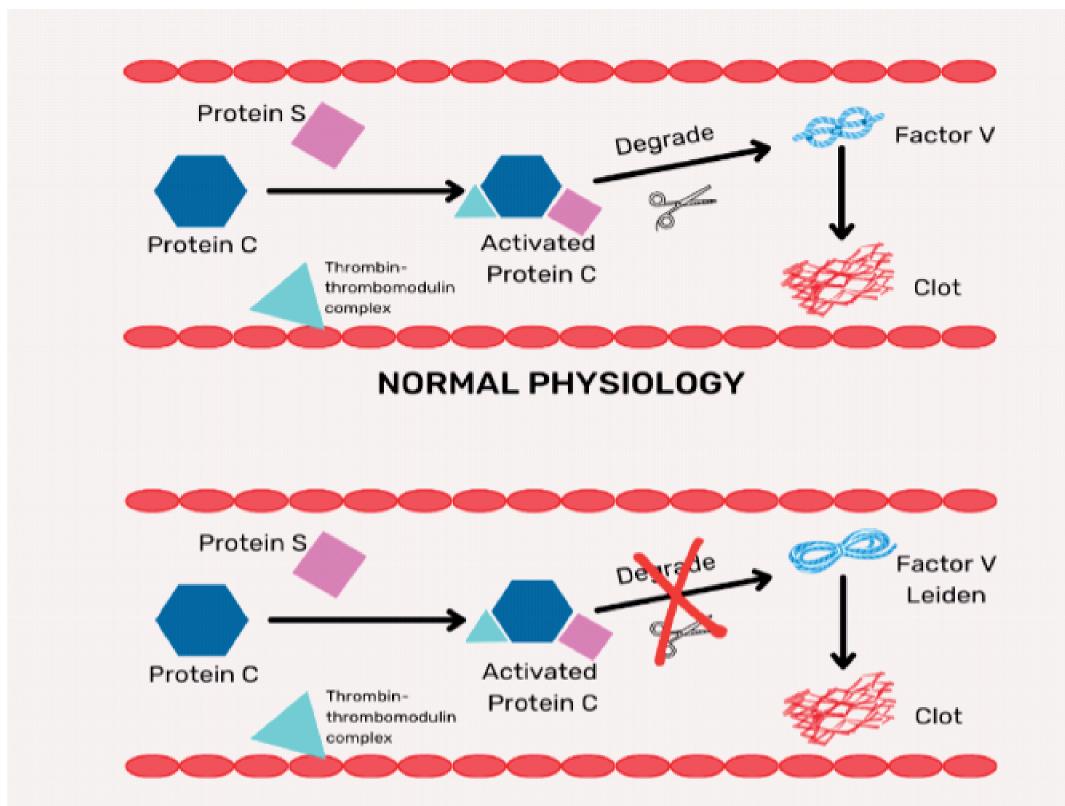


GENETIC ASSOCIATION OF PE

Anvit Divekar, Nethra Pai, Aditya Sathe, and Atul Laddu, The Global Thrombosis Forum, Suwanee, GA Keywords: PE, Genetics of PE, Mutations of genes


BACKGROUND	RESULTS, CONTD.	Table 1: Inherited Causes of Blood Clots			
		Increased levels of natural procoagulants	Decreased levels of natural anticoagulants	Abnormal Fibrinolysis	Other Inherited Causes
PE is a life-threatening condition	In preclinical studies, gene therapy	Factor V Leiden mutation or activated protein C resistance [*]	Antithrombin	Decreased Levels of Tissue Plasminogen Activator (t-PA)	Paroxysmal nocturnal hemoglobinuria
characterized by the blockage of blood vessels in the lungs due to emboli.	approaches have shown promise in restoring the balance of coagulation	Prothrombin 20210 mutation	Protein C	Increased levels of plasminogen activator inhibitor (PAI-1)	
Clotting disorders, including genetic variations, play a crucial role in the	factors and addressing underlying genetic abnormalities. Researchers	Hyperhomocysteinemi	Protein S	Elevated Thrombin- Activatable Fibrinolysis Inhibitor (TAFI)	
development of PE. Understanding the	have successfully used adeno-	FVIII, FIX, FXI, FVII, VWF	Thrombomodulin		
genetic associations of PE and clotting	associated viral vectors to deliver		Heparin Cofactor II		
disorders is essential for risk	therapeutic genes, such as those		Tissue Factor Pathway Inhibitor (TFPI)		
assessment and management	encoding natural anticoagulant	*The Factor V Leiden mutat anticoagulant action of acti	ion does not result in increas vated protein C.	ed FV levels but a resista	ance to the

strategies.

METHODS

We conducted a literature review to explore these genetic links while discussing recent advancements in gene therapies that hold promise for

proteins, into animal models with clotting disorders. These advances hold significant potential for personalized treatments that target the root genetic causes of clotting disorders, and new hope for patients with PE or recurrent thrombosis. Understanding the genetic associations of clotting disorders and PE is crucial for risk assessment and management strategies. While traditional treatments primarily rely on anticoagulants, recent advancements in gene therapies offer promising approaches to address underlying genetic abnormalities. Preclinical studies have shown positive outcomes in restoring coagulation balance using gene therapy approaches (Table 1, Figure 1).

the treatment of thrombosis and clotting disorders.

RESULTS

Mutations in genes such as factor V Leiden and prothrombin G20210A involved in coagulation pathways, increase the risk of clot formation, leading to PE (Figure 1). Deficiencies in natural anticoagulant proteins such as protein C, protein S, and antithrombin further predispose individuals to clotting disorders (Table 1). In a study by Meißner et al (2021), three single nucleotide polymorphisms (rs1800790, rs3813948, rs6025) showed evidence of association (EOA) in the main analysis, and five variants (rs169713, rs1801131, rs4524, rs5985 and rs8176592) demonstrated EOAs in subgroups, supporting the view that PE represents a complex disease with many factors contributing relatively small effect. Traditional treatments for thrombosis and clotting disorders primarily rely on anticoagulants, and recent advances have opened new avenues for gene therapies targeting clotting disorders.

CONCLUSIONS

These developments may pave the way for personalized treatments targeting genetic causes of clotting disorders, and management of PE.

FACTOR V LEIDEN G1691A MUTATION

Figure 1: Pathophysiology of Factor V Leiden Mutation

The authors disclose no conflict of interest.

REFERENCES

1. Meißner, Lisa; Schürmann, Peter; Dörk, Thilo, et al: Genetic association study of fatal pulmonary embolism, International Journal of Legal Medicine, 135, 143-151, 2021. 2. Turetz, Meredith; Sideris, Andrew; Friedman, Oren, et al: Epidemiology, Pathophysiology, and Natural History of Pulmonary Embolism, Seminars in Interventional Radiology, 35, 92-98, 2018 3. Wold, Wm. S.M.; and Toth, Karoly: Adenovirus Vectors for Gene Therapy, Vaccination and Cancer Gene Therapy, Current Gene Therapy, 13, 421-433, 2014

IMPORTANCE OF OUR WORK

Understanding the genetic associations of clotting disorders and PE is crucial for risk assessment and management strategies. These developments may pave the way for personalized treatments targeting genetic causes of clotting disorders, and management of PE.